“Concentrate on the effect of the telegraph on ordinary ideas: the coordinates of thought, the natural attitude, practical consciousness… not through frontal assault but, rather, through the detailed investigation of a couple of sites where those effects can be most clearly observed.”

James Carey

Gigabytes of digital ink have been spilled studying the political, cultural, social, and economic forces which comprise free and open source software projects. In this essay I will share and reflect on some of my personal experiences working on a particular free software project, and speculate on ways in which these observations may be extrapolated beyond my experiences. How are free software projects organized and what are some of the motivations that factor into participation and contribution? How does the experience of working on a free software project inform and transform the participant's relationship to work and play? What type production is contributing to a free software project? How does producing free software differ from producing proprietary software?

Towering Changes

The events of September 11th 2001 had a dramatic impact on the world, with effects spanning the geopolitical to the personal. My life was no exception, and as a New Yorker I was deeply traumatized by the attack and its aftermath. My career also took a surprisingly sharp turn as the attack suddenly altered the local economic landscape and the job market. At the time I was looking for a new job, as the bubble that my last employer was riding had finally burst. The city's economy was devastated and some incredibly promising leads vaporized along with the towers. I faced some difficult choices and decided to pursue a sector of the industry that I intuitively felt was a rotten fit – consulting. I did not relish the prospect of being a mercenary coder, as I preferred to devote my labor to organizations whose mission I respected. Furthermore, I identified myself as a craftsman, and enjoyed working on sophisticated, long term projects that I could devote myself to, learning and improving my knowledge and skills along the way. I had never tried consulting and endevoured to keep an open mind about the new experience. I consoled myself with the knowledge that while I would be making a trade off of breadth for depth, encountering a wide variety of situations and problems, even if the encounters were shallow. While I might not get to know any project or system intimately well, the varieties of languages and experiences might make the experience worthwhile. And besides, I might just like it.

In 2001 I was hired as a software developer at a small interactive marketing company called Abstract Edge. The company was founded during the Internet gold rush of the late nineties when three of the founders developed the website which helped organize and manage the Million Mom March. Abstract Edge had aspirations towards advertising, marketing and strategy consulting, but were essentially a web agency that was contracted to build dynamic web sites for their clients. Their clients included some non-profits such as The Gift of New York and Give Kids the World as well as corporate clients including Clairol Professional and the New York City's Marriott Marquis Hotels. Abstract Edge had survived the dotcom collapse by cautiously managing their expansion and not getting drawn into the greedy mania of venture capitalism. They operated on a small profit margin, maintained a small staff with minimal overhead, and frequently lowballed their estimates in Responses for Proposals.

In the summer of '02 we pitched a project with The American Legacy Foundation
, a multi-million dollar non-profit organization founded as a part of the settlement terms from the litigation against the tobacco industry. The American Legacy Foundation developed the successful “truth” campaign, a youth-focused anti-tobacco education campaign focusing on smoker cessation. They were planning a sister site to the truth.org, this one designed to support anti-smoking activists, to teach them how to more effectively organize and how to effectively promote an anti-smoking message. They wanted this site to function as a community environment, enabling activism through viral social networking. While sites like these are commonplace in 2007, in 2002 the kinds of functionality they dreamt about was not commonplace. This was the Web 1.0 era, in the days before the popularity of Wikipedia, MySpace, and Facebook, and sites with strong support for interactive community activism were just begin inning to emerge.

The American Legacy Foundation had already spent a year developing content for this environment when they sought out a technical partner to implement their concept. The had already developed a vast amount of content for the initial site launch, and had compiled over a dozen 3‑inch binders full of material, including articles, activities, news, facts, timelines, surveys, biographies. This content was dense and richly connected and they needed a system for editors to organize and administer it. Due to the controversial nature of their content, and the litigious nature of their adversaries, everything published on the site needed scientific and legal sign-off prior to publishing. The environment also needed to support membership, profiles, discussion boards, commenting, email, synchronous chat, and workflows for submission and moderation.

Abstract Edge had initially contracted to deliver this entire environment on an incredibly compressed timeline, and as the lead technical architect on the project I knew that our past development models were not up to the task. Abstract Edge usually delivered custom solutions, developed in house, mostly from scratch. Software is composed of many layers, so it is a slight misnomer to talk about developing anything from scratch , but we were not leveraging platforms or frameworks that were becoming necessary to keep up with the rising bar of expectations in the software industry. The requirements for systems like these were growing in complexity as the media itself grew in popularity and importance.

Contentment Management

In the early days of the web, organizations were content with one-way mass publishing managed by a technical support staff.. The importance of managing an organization's presence and message on the web continued to grow and marketing and communications personnel became very concerned that they had lost precise control over publishing. Publishing control now resided in the hands of webmasters, or worse, third party consultants who needed to be contacted and paid for every small adjustment and modification. Management began to prioritize the development of systems which allowed for non-technical administrators to organize and manage publication to the web. These systems tended to be inherently complex, since they strove to embody the hierarchy and bureaucracy of the organization they served. They were designed to capture the organization's processes and needed to model its roles and structures accordingly. These processes can be captured informally -- through the cultural of use within the system, or formally -- rigidly enforced by the system's explicitly defined rules. Many organizations instinctively gravitated towards rigid enforcement and modeling, often underestimating the difficulty involved in explicitly defining these processes, and neglecting the importance of engineering flexibility into these systems so that these processes could evolved and change over time, in response to shifting needs and conditions.

As organizations desired increasingly complex publishing systems, modeled specifically on their workflows and processes and intended to be administered and used by non-technical staff, software solutions emerged which reflected these requirements. This class of systems is known as “Content Management Systems”, and high-end enterprise systems like this can be traced back to the early nineties. At the turn of the millennium, enterprise content management systems were expensive, and cost upwards of millions to provision, deploy, and support. Classic users of content management systems are news sites like CNN and the New York Times, which have strict publishing workflows and a vast depth of content. But a variety of different domains can be modeled using content management tools, including brochure-ware, e-commerce, corporate intranets, educational course management, and community organizing.

As organizations began to outgrow their first-generation web sites, they specified replacements which enabled them to administer the sites themselves, without technical expertise. Many homegrown content management systems were developed, but especially as blogs and wikis gained popularity, richer and more powerful interfaces were in high demand. At the same time, free and open source platforms aimed at this problem space were becoming popular,

The American Legacy Foundation's project was enormously complex, and I thought that approaching it using our traditional development processes carried a great risk of failure. I began to research other alternatives, examining hosted solutions, proprietary toolkits, and a few open source projects. The risk of using a complex framework involved the time required to become proficient with the complex concepts and constructs . As with any specialized and sophisticated tool, learning to use it proficiently will likely increase efficiency and productivity, but will require education and time to master.

My boss hesitantly agreed with my reasoning, and after a very rapid evaluation process, we selected a young and unproven open source CMS called Plone for the project. We invested part of the development budget to bring in an Plone expert to jumpstart our training with the software, and hired a second freelance developer proficient in the python programming language to to assist with the development. The fact that Plone was free software was a relevant factor in our decision, but mostly for financial reasons, not political or strategic– we did not have a good understanding of the community we were about to become a part of and the transformative changes in development processes that would follow.

At the time I used open source software daily, but had not participated closely in any projects beyond asking a few questions on mailing lists. I was largely uneducated about the differences between open source licenses, and was only peripherally aware of the politics around intellectual property, free culture, and free software. I had played with GNU/Linux in college, and thought it was great that the source code was available, but was not a free software evangelist. I had been studying development methodologies and project management literature, and was very interested in alternative processes for creating better software, but from a practical perspective, not an ideological one.

As we began to settle into the rhythm of development, something was different about this effort. In the past, the layers of open source technology that I had used were a few layers of abstraction below the actual problem I was trying to solve. So, I might be developing on an open source operating system (e.g. GNU/Linux), in an open source language (e.g. perl or python), against an open source database (e.g. PostgreSQL or MySQL) and running an open source web server (e.g. Apache), but I wasn't developing operating systems, programming languages, databases or web servers – I was developing web applications. In this case, the application we were developing was very similar to the tool we were using to develop it with – the specifics of our problem could be thought of as a very thin layer on top of the underlying Plone platform. So, many of the issues and challenges we faced were very similar to the issues that other members of the software community were facing, and closely resembled the problems that this project was attempting to generalize and address.

We began to work quite closely with the community, regularly communicating over email in IRC chats about the kinds of issues we were dealing with and how others had attempted to solve them. The immensity of our challenge suggested automating certain mundane operations that we would likely have tackled manually with brute force had our project been a little smaller. When we described the infrastructure we were developing to automate certain aspects of our development, there was a very keen interest in our solution. The freelancer we had hired turned out to be quite brilliant and had also had personal experience participating in open source development. We published some of the software we were working on, and other developers began to work with it, and fount it very clever and useful. We were invited to a small workshop, also known as a “sprint”, that the developers of this project were organizing in Rotterdam to share our progress and participate in the ongoing development of the next iteration of the platform.

Abstract Edge was not in the habit of sending the developers on business trips, and it was hard for management to understand how they would directly benefit from sending us to this event. We explained to them the advantages of participating in a peer production effort, recapitulating many of the standard arguments explaining the self-interested benefits of participating in open source development. In addition to the efficiency of having multiple developers test and debug our software, we also made the case that capturing developer mindshare was a valuable investment, as we could work to steer the community towards solving problems where we held stakes. Management grudgingly gave way and agreed to sponsor our participation. I distinctly recall my co-workers determination to attend the event, mentioning that if our employers decided not to send us, he would use his vacation days and attend at his own expense. I remember thinking how strange it sounded to consider using vacation days for something that seemed work-related, but then I had never been to a sprint or a developers conference to understand the appeal.

A “sprint” is a multi-day focused development session, inspired by a practice described in the agile development methodology “extreme programming.” Unlike a traditional conference there are no planned speakers or formal talks, although there are plenty of impromptu training sessions and short presentations. Instead, participants self-organize and form a consensus around a few small projects they can accomplish in a the alloted time. They work intensely in pairs or small teams using the pair programming approach, also recommended by the extreme programming development philosophy. Experienced developers often pair up with less experienced developers, and there is usually a coach leading the session, and helping to set the agenda and track activities on a whiteboard. These in‑person meetings are important occasions, where development on the project is advanced, leadership in the community is established, development approaches are shared and exchanged, and planning that is sometimes difficult to work out asynchronously, such as architecture and strategic directions, can discussed. Sprints are also very social, as the intense work ethic gives way to an intense play ethic. Sprtinters will often code late into the evening, and then stay out socializing late into the morning.

Roderdam was an incredible adventure, and I met many independent developers who had beeen working on the project for years. The experience expanded my thinking about the possibilities around taught me a great deal about the appeal of long working

Smoke Break

Back in New York City, our anti-tobacco project was suffering from delays and setbacks all too typical in the software world. But, as Abstract Edge began to pitch new projects, it became apparent that Plone was a powerful tool for approaching a wide range of efforts.

As a developer, working as a mercenary can be a devastating for morale. In many cases, your work is by definition a throw‑away one‑off, meant to be written once never to be returned to. There is rarely time on a single project to develop a sophisticated infrastructure, or to attend to the aesthetic sensibilities of building beautiful software or writing elegant code. Participating in an open source project allowed us to transcend the limitations and constraints of the oppressive conditions we were working under, and escape into a utopia creative design, and play out an act of resistance.

Writing open software on employers payroll, or while billing a client is an act of resistance.

As a freelancer, or at a small company it is difficult to find peers or colleges to learn from. Even the appreciation from a superior is hollow compared to the honest criticism from peers you respecct. There is nothing an active learner appreciates more than having their work vetted by someone whose skills and experience they honor and respect.

The Plone project was started in 1999 by two web developers

Alex Runyan and Alexander Limiinitial decision to

We made the case that as a consulting business, we were in the service industry. When it came to software, ownership was a liability, not an asset. With a shallow bugs

The conditions were ripe for

Blogs, Wikis, and Web 2.0.

grew dissatisfied with the reality

Dreaming in Code

�	 Carey, James W. “Technology and Ideology: The Case of the Telegraph” in his Communications as Culture (Winchester: Unwin-Hyman, 1989), p. 210.

�	http://www.americanlegacy.org

