Jonah Bossewitch

G8200: Economic Sociology

Oct 29, 2009

Prof. David Stark

Aversion to Commitment

Since the early 1970s software developers have used specialized tools, “version control systems”, to help them manage and control changes to software code across contributors and time. In the early days, these tools were focused on tracking the history of changes to discrete files, but they have progressed significantly, and are now used to help coordinate projects involving massive numbers of contributors, and ever more intricate experiments. Software continues to grow more complicated and vast, and teams are more distributed and dispersed. Accordingly, developers have reflexively refined their workflows and processes, often visible in the form of the tools used to support these collaborations.

In the past few years “distributed version control systems” (DVCS) have dramatically increased in popularity.
There is a fascinating culture emerging around DVCS, facilitated by software, but responding to (and suggesting) shifts in collaboration styles. As with earlier generations of version control systems, it is easy to imagine these practices percolating through other areas of information production.

As one developer explains:

SourceForge [a venerable community site which provides centralized version control] is about projects. GitHub [a popular new community site which provides distributed version control] is about people... A world of programmers forking, hacking and experimenting. There is merging, but only if people agree to do so, by other channels... GitHub gives me my own place to play. It lets me share my code the way I share photos on Flickr, the same way I share bookmarks on del.icio.us. Here’s something I found useful, for what it’s worth... Moreover, I’m sharing my code, for what it’s worth to me to share my code... I am sharing my code. I am not launching an open source project. I am not beginning a search for like minded developers to avoid duplication of efforts. I am not showing up at someone else’s door hat in hand, asking for commit access. I am not looking to do battle with Brook’s Law at the outset of my brainstorm.

Sometimes developers simply want to publish and share their work, not start a social movement. Sometimes they want to contribute back to a project without going through masonic hazing rituals. DVCS facilitates these interactions, far more easily than traditional centralized version control systems and the hierarchical social organizations which tend to accompany these systems. Part of what makes this all work smoothly are very good tools to help merge disparate branches of work. This all sounds chaotic and unmanageable, but so did concurrent version control when it first became popular (that is, allowing multiple people to check out the same file at the same time, instead of locking it for others while one person was working on it).

Wikipedia runs on the direct analog of a centralized version control system, but the Linux Kernel is developed on DVCS. In anecdotal accounts of switching to DVCS developer's describe an increase in the joy of sharing – the tools help reduce the disciplined overhead of perfecting software for an imagined speculative use and coordinating networks of trusted contributors. The practice really emphasizes the efficient laziness of agile programming, and helps people concentrate on the immediate requirements, not what you think you might need later.

In many respects, this emerging style of collaboration is more free-loving than an anonymously editable wiki, since all versions of the code can simultaneously exist – almost in a state of superposition. The expression of a multiplicity of heteracrchical voices is explicitly encouraged, although there is a hidden accumulation of technical debt that accrues the longer you put of combining different branches of work. And, sometimes you may actually want to start a community or social movement around your software, which is still possible, but is now decoupled and needs to be managed carefully.

We are starting to see hints of this style of collaborative production breaking free from the software development world and into the realm of content production, initially in the forms of distributed research, filtering, and analysis. As Benkler has argued, ranking and filtering is itself just another information good, itself amenable to peer production, but the best ways of organizing and coordinating–distributing and then reassembling–this production, still need to be worked out. DVCS offers us an innovative and promising model for thinking about new styles of distributed collaboration.

